If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+17=130
We move all terms to the left:
3x^2+17-(130)=0
We add all the numbers together, and all the variables
3x^2-113=0
a = 3; b = 0; c = -113;
Δ = b2-4ac
Δ = 02-4·3·(-113)
Δ = 1356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1356}=\sqrt{4*339}=\sqrt{4}*\sqrt{339}=2\sqrt{339}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{339}}{2*3}=\frac{0-2\sqrt{339}}{6} =-\frac{2\sqrt{339}}{6} =-\frac{\sqrt{339}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{339}}{2*3}=\frac{0+2\sqrt{339}}{6} =\frac{2\sqrt{339}}{6} =\frac{\sqrt{339}}{3} $
| b(b+1)=0 | | 486+108x+6x^2=0 | | -16+x=- | | 2x5=7 | | -6x-34=8(x+1) | | (k+1)(k-8)=0 | | 6x-25=-25 | | 8t-((6t-1)/2)=5 | | 160=280-20x | | 2x+1=-8x+(20+1) | | 0=4x2+18x-10 | | 4(10-1)-2(6x)=0.2 | | 10x+1=-5 | | 6y^2+4y-137=0 | | v5=65 | | 7x-19=x+11 | | 8z+5=5 | | x^2+14x+49=14 | | 6n+0.74=2n-0.52 | | 3k+4=20 | | 9x-40=14 | | 0.02+8y=-0.3 | | 2x-5=x+ | | 4y-4y-13=15 | | 3b+4=2b+11 | | 0=25+-15x | | 2x-4.4=2.5 | | 4c+3c-3c=11 | | 4x-5=9+2(x-12) | | 6x-7=-5(x+1)-13 | | 19n-17n+3n=5 | | 6x-7=-5(x+1)=-13 |